Investigating Subclasses of Abstract Dialectical Frameworks

Martin DILLER, Atefeh KESHAVARZI ZAFARGHANDI, Thomas LINSBICHLER, and Stefan WOLTRAN

Abstract. Abstract dialectical frameworks (ADFs) are generalizations of Dung argumentation frameworks where arbitrary relationships among arguments can be formalized. This additional expressibility comes with the price of higher computational complexity, thus an understanding of potentially easier subclasses is essential. Compared to Dung argumentation frameworks, where several subclasses such as acyclic and symmetric frameworks are well understood, there has been no in-depth analysis for ADFs in such direction yet (with the notable exception of bipolar ADFs). In this work, we introduce certain subclasses of ADFs and investigate their properties. In particular, we show that for acyclic ADFs, the different semantics coincide. On the other hand, we show that the concept of symmetry is less powerful for ADFs and further restrictions are required to achieve results that are similar to the known ones for Dung’s frameworks. We also provide experiments to analyse the performance of solvers when applied to particular subclasses of ADFs.

Keywords. abstract argumentation, abstract dialectical frameworks, acyclic graphs, expressiveness, performance analysis

1. Introduction

Abstract dialectical frameworks (ADFs) are generalizations of Dung argumentation frameworks (AFs) where arbitrary relationships among arguments can be formalized via propositional formulas which are attached to the arguments. This allows to formalize notions of support, collective attacks, and even more complicated relations. Due to their flexibility in formalizing relations between arguments, ADFs have recently been used in several applications. However, this additional expressibility comes with the price of higher computational complexity. Specifically, reasoning in ADFs spans the first three (rather than the first two, as for AFs) levels of the polynomial hierarchy.

It is thus a natural question to investigate subclasses of ADFs. Compared to Dung argumentation frameworks, where several subclasses have been thoroughly studied (see e.g., [10,11,12]), there has not been a systematic investigation of subclasses of ADFs yet, with the exception of bipolar ADFs where the links between arguments are restricted to have either supporting or attacking nature. In particular, there have been no studies yet about under which structural restrictions on ADFs different semantics coincide.

Author names are sorted in alphabetical order. This paper is based on the second author’s master thesis [1].
In this work, we aim to define several subclasses of ADFs and investigate their properties in terms of semantics. As a first class, we consider acyclic ADFs (i.e., the link-structure forms an acyclic graph) and show that - analogous to well-founded AFs - the main semantics coincide for this class. We further investigate the concept of symmetric ADFs. In contrast to the case of AFs, we will see that properties as coherence and relative-groundedness do not carry over and require further restrictions which leads to the class of acyclic support symmetric ADFs (ASSADFs). Following the work of Dunne et al. [13] we investigate the expressiveness of our ASSADF subclass in terms of signatures, i.e. the set of possible outcomes which can be achieved by ASSADFs under the different semantics. We thus complement here results which have been obtained for general [14,15] and bipolar ADFs [16] and also compare ASSADFs with AFs in terms of expressibility. Finally, we provide a preliminary experimental analysis which analyses to which extent ADF-solvers benefit from instances that are acyclic (and symmetric).

2. Preliminaries

Definition 1. [3] An abstract dialectical framework (ADF) is a tuple \(D = (S, L, C) \) where \(S \) is a finite set of nodes (arguments, statements, positions), \(L \subseteq S \times S \) is a set of links, and \(C = \{ \phi_s \}_{s \in S} \) is a set of propositional formulas (acceptance conditions). Each \(\phi_s \in C \) is constructed out of the parents \(\text{par}(s) \) of \(s \in S \), where \(\text{par}(s) = \{ a \in S \mid (a, s) \in L \} \).

We depict ADFs as annotated directed graphs where nodes represent arguments, directed edges represent links, and acceptance conditions are given by the annotations next to arguments. An argument \(s \in S \) is called initial if \(\text{par}(s) = \emptyset \). Note that the arguments act as propositional atoms in the acceptance conditions.

Let \(D = (S, L, C) \) be an ADF. An interpretation \(v \) (for \(D \)) is a function mapping arguments to one of the truth values true (t), false (f), or undecided (u), i.e. \(v : S \mapsto \{ t, f, u \} \). An interpretation \(v \) is two-valued if it maps each argument to either t or f. The sets \(v^t, v^f, \) and \(v^u \) contain those arguments that \(v \) maps to true, false and undecided, respectively. Further, \(v \) is called trivial, denoted \(v_u \), if \(v(s) = u \) for each \(s \in S \). Finally, we denote the update of an interpretation \(v \) with a truth value \(x \in \{ t, f, u \} \) for an argument \(b \) by \(v^b_x \), i.e., \(v^b_x(b) = x \) and \(v^b_x(a) = v(a) \) for \(a \neq b \).

Interpretations are ordered w.r.t. their information content. This is based on the partial order of truth values, for which \(u \leq_i t \) and \(u \leq_i f \). An interpretation \(v \) is at least as informative as another interpretation \(w \), denoted by \(w \leq_i v \), if \(w(s) \leq_i v(s) \) for each \(s \in S \). As usual \(w <_i v \) whenever \(w \leq_i v \) and not \(v \leq_i w \). The meet operator \(\sqcap_i \) on truth values is defined as \(t \sqcap_i t = t, f \sqcap_i f = f \) and returns \(u \) otherwise. The meet \(\sqcap_i \) of two interpretations \(v \) and \(w \) is then defined as \((v \sqcap_i w)(s) = v(s) \sqcap_i w(s) \) for each \(s \in S \).

Semantics for ADFs are defined based on the characteristic operator \(\Gamma_D \) which maps interpretations to interpretations. Given an interpretation \(v \) (for \(D \)) it is defined as

\[
\Gamma_D(v) = v' \text{ such that } v'(s) = \begin{cases}
 t & \text{if } \phi_s^v \text{ is irrefutable (i.e., a tautology),} \\
 f & \text{if } \phi_s^v \text{ is unsatisfiable,} \\
 u & \text{otherwise.}
\end{cases}
\]
This uses the partial valuation of φ, by v, which is $\varphi_v^\uparrow = \varphi_v[p/\top : v(p) = t][p/\bot : v(p) = f]$ where p is an argument occurring in φ. The semantics of ADFs are defined via the characteristic operator as in Definition 2.

Definition 2. Given an ADF D, an interpretation v is

- *admissible* in D iff $v \subseteq \Gamma_D(v)$;
- *complete* in D iff $v = \Gamma_D(v)$;
- *grounded* in D iff v is the least fixed-point of Γ_D;
- preferred in D iff v is \leq-maximal admissible (resp. complete);
- a (two-valued) model of D iff v is two-valued and $\forall s \in S : v(s) = v(\varphi_s)$;
- a *stable model* of D if v is a model of D and $v^i = w^i$, where w is the grounded interpretation of the *stb*-reduct $D^i = (S', L', C')$, where $S' = v^i$, $L' = L \cap (S' \times S')$, and $\varphi_s[p/\bot : v(p) = f]$ for each $s \in S$.

The set of all σ interpretations for D is denoted by $\sigma(D)$, for $\sigma \in \{adm, com, grd, prf, mod, stb\}$.

In an ADF $D = (S, L, C)$, a link $(b, a) \in L$ is called *supporting* (in D) if for every two-valued interpretation v, $v(\varphi_b) = t$ implies $v^i_b(\varphi_a) = t$; a link $(b, a) \in L$ is called *attacking* (in D) if for every two-valued interpretation v, $v(\varphi_b) = f$ implies $v^i_b(\varphi_a) = f$. $(b, a) \in L$ is named *redundant* (in D) if it is both attacking and supporting.

An ADF D is called *bipolar* (or *BADF* for short) if each link in L is attacking in D or supporting in D (thus, the links can also be redundant). An ADF $D = (S, L, C)$ is an AF if the acceptance condition of every argument $s \in S$ is of the form $\varphi_s = \bigwedge_{u \in par(s)} \neg a$. It can then be represented in the more usual form, as a tuple $F = (A, R)$ with arguments $A = S$ and attacks $R = L$.

3. Properties of ADF Subclasses

We begin this section with a novel reformulation of Dung’s Fundamental Lemma [2, Lemma 10] in the realm of ADFs. Besides the case of an argument being acceptable (also called defended in AFs) there is the symmetric case where an argument is deniable.

Definition 3. Let $D = (S, L, C)$ be an ADF and v be an interpretation on S. An argument $s \in S$ is called *acceptable* w.r.t. v (in D) if φ_s^v is irrefutable. An argument $s \in S$ is called *deniable* w.r.t. v (in D) if φ_s^v is unsatisfiable.

Lemma 1. Let v be an admissible interpretation of ADF $D = (S, L, C)$, and a and a' be arguments which are acceptable (resp. deniable) with respect to v in D. Then,

1. $v' = v^i_a$ (resp. $v' = v^i_{a'}$) is admissible in D, and
2. a' is acceptable (resp. deniable) with respect to v' in D.

Proof. We show the result for a and a' being acceptable. The deniable case is symmetric.

First note due to φ_s^v being irrefutable and v being admissible, $v(a) \neq f$. Also, $v'(a) = t$ by the definition of v'. Hence, $v \leq_i v'$.

(1) We need to show that $v' \leq_i \Gamma_D(v')$, that is, for all $s \in S$, $v'(s) \leq_i \Gamma_D(v')(s)$. Consider an arbitrary $s \in S$. If $v'(s) = u$ we are done. Assume $v'(s) = t$. There are two cases
either $s = a$ or $s \neq a$. If $s \neq a$, also $v(s) = t$. Since v is admissible, φ^v_a is irrefutable. If $s = a$, then s is acceptable w.r.t. v by assumption. Hence, again, φ^v_a is irrefutable. Since we know that $v \leq v'$ it follows that also $\varphi^{v'}_a$ is irrefutable. Similarly, we get that $\varphi^{v'}_a$ is unsatisfiable if $v'(s) = f$. Hence v' is admissible.

2) By assumption d' is acceptable w.r.t. v, hence $\varphi^{v'}_{d'}$ is irrefutable. Since $v \leq v'$, also $\varphi^{v'}_{d'}$ is irrefutable, i.e. d' is acceptable w.r.t. v'.

3.1. Acyclic ADFs

Definition 4. An ADF $D = (S, L, C)$ is acyclic if its corresponding directed graph (S, L) does not contain any directed cycle.

We will need the concept of maximum level of ADFs defined as follows.

Definition 5. The level of an argument s of an ADF D is the number of links on the longest path from an initial argument to s plus 1. The maximum level of an (acyclic) ADF D is the level of an argument of D that is at least as high as the level of any other argument of D.

It is clear that every acyclic ADF has a maximum level. In the remainder of this section we show that all main semantics coincide for acyclic ADFs.

Proposition 2. In every acyclic ADF D the \leq_{Γ}-least fixed point of Γ_D is a model of D.

Proof. Let $D = (S, L, C)$ be an acyclic ADF and let m be its maximal level. Moreover, let $v_0 := u$ and $v_i := \Gamma_D(v_{i-1})$ for $1 \leq i \leq m$. We claim that for all i with $1 \leq i < m$, and every argument s_j with level $j \leq i$ it holds that either $v_i(s_j) = t$ or $v_i(s_j) = f$. We show this claim by induction on i:

- **Base case:** Suppose s_1 is an arbitrary argument of level one (an acyclic ADF always includes an initial argument). Since s_1 is an initial argument, either $\varphi_{s_1} = \top$ or $\varphi_{s_1} = \bot$. Hence $v_1(s_1) = \Gamma_D(v_0)(s_1)$ is either true or false.

- **Inductive step:** Assuming this property holds for all k with $1 \leq k < i < m$, we show it holds for $i + 1$. We know that $\varphi^v_j = \varphi_{s_k}[s_k/\top : v_j(s_k) = t][s_k/\bot : v_j(s_k) = f]$. For all s_k that occur in φ_j, it holds that $k < j \leq i + 1$, with k being the level of s_k. Therefore, by the inductive hypothesis, for each s_k, either $v_j(s_k) = t$ or $v_j(s_k) = f$. Hence either $\varphi^v_{s_k} \equiv \top$ or $\varphi^v_{s_k} \equiv \bot$ and, consequently, either $v_{i+1}(s_j) = t$ or $v_{i+1}(s_j) = f$.

Since m is the maximum level of any argument in D, we now get that $v_m(s)$ is either true or false for all $s \in S$, i.e. it is a two-valued interpretation. Moreover, it holds that $v_m = \Gamma_D(v_m)$, i.e. v_m is a fixed point.

To show that v_m is the least fixed point of Γ_D, assume, towards a contradiction, that there exists an interpretation $v < v_m$ such that $v = \Gamma_D(v)$. Then there exists an argument s such that either $v_m(s) = t$ or $v_m(s) = f$, but $v(s) = u$. Assume s has level i. Since D is an acyclic ADF all arguments s_k that occur in φ, have a level less than i. Therefore, there exists at least an argument s_j of level $j < i$ in φ such that $v(s_j) = u$. By iterating this method after at most $i - 1$ times we reach an argument s_1 of level 1 for which $v(s_1) = u$. This is a contradiction, since at level 1 it must be the case that either $\varphi_{s_1} = \top$ or $\varphi_{s_1} = \bot$ and therefore $\Gamma_D(v)(s_1) \neq u$. □
Theorem 3. In every acyclic ADF D the sets of grounded interpretations, complete interpretations, preferred interpretations, two-valued models, and stable models coincide.

Proof. First, the grounded interpretation v of D is also complete in D. Moreover, Proposition 2 implies that v is a two-valued model of D. Since $w = w' = v'$ in which $w = \text{grd}(D')$, v is a stable model. It remains to show that there is no further complete interpretation v' of D. Since v is two-valued it must hold that $v \not< v'$. However, since v is grounded and therefore the least complete interpretation, such a v' cannot exist. Therefore, v is a unique complete interpretation of D which is grounded, stable, two-valued, and preferred. \qed

3.2. Symmetric ADFs

The study of symmetric ADFs is motivated by the fact that, as shown in [10], stable and preferred semantics coincide for symmetric AFs, a property called coherence. Due to the distinction between two-valued and stable models in ADFs, we actually consider different levels of coherence.

Definition 6. An ADF D is called

- coherent if each preferred interpretation of D is a stable model of D;
- weakly coherent if each two-valued model of D is a stable model of D;
- semi-coherent if each preferred interpretation of D is a two-valued model of D.

Another concept studied in [10] is relatively groundedness, which is shown to hold for every symmetric AF there. That is, the grounded extension coincides with the intersection of all preferred extensions. We generalize this definition to ADFs.

Definition 7. An ADF D is called relatively grounded if $\text{grd}(D) = \bigcap \text{prf}(D)$.

Symmetric ADFs are now defined as follows.

Definition 8. An ADF $D = (S, L, C)$ is symmetric if L is irreflexive and symmetric and L does not contain any redundant links.

It turns out that neither of the properties analogous to those holding for symmetric AFs hold for symmetric ADFs.

Theorem 4. The class of symmetric ADFs is neither semi-coherent, nor weakly coherent, nor relatively grounded.

Proof. Let D be the symmetric ADF depicted in Figure 1. It holds that $\text{prf}(D) = \{v_1, v_2\}$ with $v_1 = \{a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto t, e \mapsto f\}$ and $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto u, e \mapsto u\}$. Since v_1 is a two-valued model of D which is not stable (since $D' = D$ and $\text{grd}(D) = \{v_2\}$), D is not weakly coherent. Also, D is not semi-coherent since v_2 is not two-valued. In addition, $\bigcap \text{prf}(D) = v_2 = \{a \mapsto t, b \mapsto u, c \mapsto u, d \mapsto u, e \mapsto u\}$, but $\text{grd}(D) = \{v_2\}$. Therefore, D is not relatively grounded. \qed

This raises the question whether there is a particular subclass of symmetric ADFs which fulfills the properties considered in Theorem 4. We investigate if this is the case for acyclic support symmetric ADFs.
The interpretation which is not a two-valued model. Hence, \(u \) is a stable model, \(D \) is weakly coherent, confirming Theorem 6. However, \(v \) is a preferred interpretation which is not a two-valued model. Hence, \(D \) is not semi-coherent. We show that ASSADFs are weakly coherent, using the following technical lemma.

Lemma 5. Let \(D \) be an ADF, \(v \) be a two-valued model of \(D \), and \(s \in S \) be an argument s.t. all parents of \(s \) are attackers and \(s \) does not occur in \(\varphi \). If \(\varphi^v_s \) is irrefutable then \(\varphi^v_s \) contains an argument \(s \) supporting \(s \). For \(s \) to appear in \(\varphi^v_s \) it must be that \(v(s) = t \). Since supports are acyclic in ASSADFs, by the same reason \(\varphi^v_s = \varphi_s[s_i/\bot : v(s_i) = f] \) contains an argument \(s_2 \) which is different from \(s \) and \(s_1 \) and which supports \(s_1 \). Thus there exists an infinite sequence of \(s_1, s_2, \ldots \) s.t. \(s \) supports \(s_2 \). This is a contradiction to \(D \) being an ASSADF.

On the other hand, ASSADFs are neither semi-coherent nor relatively grounded.

Theorem 7. The class of ASSADFs is neither semi-coherent nor relatively grounded. Even ASSADFs without supporting links are not semi-coherent.

Proof. Consider the ASSADF \(D \) depicted in Figure 2. \(D \) has 4 preferred interpretations, namely \(v_1 = \{ a \mapsto f, b \mapsto f, c \mapsto t, d \mapsto t, e \mapsto f \} \), \(v_2 = \{ a \mapsto f, b \mapsto f, c \mapsto f, d \mapsto t, e \mapsto f \} \), \(v_3 = \{ a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto f, e \mapsto f \} \), and \(v_4 = \{ a \mapsto u, b \mapsto u, c \mapsto f, d \mapsto f, e \mapsto t \} \). As every two-valued interpretation of \(D \) (that is \(v_1, v_2 \) and \(v_3 \)) is also a stable model, \(D \) is weakly coherent, confirming Theorem 6. However, \(v_2 \) is a preferred interpretation which is not a two-valued model. Hence, \(D \) is not semi-coherent.

We show that ASSADFs are not relatively grounded. Consider the ASSADF \(D = (S, L, C) \) with \(S = \{ a, b, c \} \), \(\varphi_a : \neg b \wedge \neg c \), \(\varphi_b : \neg a \wedge \neg c \), and \(\varphi_c : a \vee \neg b \). \(D \) has preferred
interpretations $v_1 = \{a \mapsto f, b \mapsto f, c \mapsto t\}$ and $v_2 = \{a \mapsto f, b \mapsto t, c \mapsto f\}$. We obtain $v_1 \cap v_2 = \{a \mapsto f, b \mapsto u, c \mapsto u\}$. However, the grounded interpretation of D is the trivial interpretation v_0. That is, D is not relatively grounded.

4. Expressiveness of ADF Subclasses

In this section we deal with the expressiveness of formalisms from the perspective of realizability [13]. In particular, we are interested in how the novel class of ASSADFs behaves in these terms compared to AFs and (B)ADFs. The relationship between AFs, BADFs, and ADFs under the main semantics has been studied in previous work [15,16].

A set of interpretations V is said to be σ-realizable in a formalism F, which is the set of structures available in F, if there exists an element kb ("knowledge base") of F s.t. $\sigma(kb) = V$. The signature Σ^σ_F of a formalism F is then defined as follows.

Definition 11. The signature Σ^σ_F of a formalism F w.r.t. a semantics σ is defined as:

$$\Sigma^\sigma_F = \{\sigma(kb) \mid kb \in F\}.$$

Given two formalisms F_1 and F_2, we say that F_1 is strictly more expressive than F_2 for σ, whenever $\Sigma^\sigma_{F_1} \subsetneq \Sigma^\sigma_{F_2}$. F_1 and F_2 are incomparable under semantics σ if neither $\Sigma^\sigma_{F_1} \subsetneq \Sigma^\sigma_{F_2}$ nor $\Sigma^\sigma_{F_2} \subsetneq \Sigma^\sigma_{F_1}$. This is denoted as $\Sigma^\sigma_{F_1} \nsubseteq \Sigma^\sigma_{F_2}$.

In the following, we will study the signature of ASSADFs w.r.t. the semantics under consideration, compared to AFs and BADFs. We begin by showing that BADFs are strictly more expressive than ASSADFs for $\sigma \in \{adm, prf, com, mod\}$.

Theorem 8. For $\sigma \in \{adm, prf, com, mod\}$ it holds that $\Sigma^\sigma_{ASSADF} \subsetneq \Sigma^\sigma_{BADF}$.

Proof. Since every ASSADF is, by definition, a BADF, $\Sigma^\sigma_{ASSADF} \subseteq \Sigma^\sigma_{BADF}$ is clear. To show that Σ^σ_{BADF} is a strict superset of Σ^σ_{ASSADF} it is enough to find a set of interpretations V which is σ-realizable in BADFs, but not σ-realizable in ASSADFs.

For $\sigma \in \{prf, mod\}$, let $V = \{\{a \mapsto t\}, \{a \mapsto f\}\}$, and for $\sigma' \in \{com, adm\}$, let $V' = \{\{a \mapsto u\}, \{a \mapsto t\}, \{a \mapsto f\}\}$. The BADF $D = (S, L, C)$ with $S = \{a\}$ and $\varphi_a = a$ realizes V under σ and V' under σ'. On the other hand, it is easy to check that there is no ASSADF with one argument which realizes V under σ, and respectively, V' under σ'. (If there is an ASSADF with one argument a then either $\varphi_a = T$ or $\varphi_a = \bot$. Thus, it can realize neither V nor V' under σ'.)
In the proof of Theorem 9 we show why, on the other hand, AFs and ASSADFs are incomparable for $\sigma \in \{\text{adm, prf, com}\}$.

Theorem 9. $\Sigma_{\text{AF}}^\sigma \not\sim \Sigma_{\text{ASSADF}}^\sigma$ for $\sigma \in \{\text{adm, prf, com}\}$.

Proof. To demonstrate that AFs and ASSADFs are incomparable under Σ, we show that $\Sigma_{\text{AF}}^\sigma \not\subseteq \Sigma_{\text{ASSADF}}^\sigma$ and $\Sigma_{\text{ASSADF}}^\sigma \not\subseteq \Sigma_{\text{AF}}^\sigma$.

- To show $\Sigma_{\text{AF}}^\sigma \not\subseteq \Sigma_{\text{ASSADF}}^\sigma$ consider $V = \{(a \mapsto u)\}$. A witness of σ-realizability in AFs is $F = \{(a, \{a\})\}$. However, there is no ASSADF to realize V under σ.

- To verify that $\Sigma_{\text{ASSADF}}^\sigma \not\subseteq \Sigma_{\text{AF}}^\sigma$ for $\sigma \in \{\text{adm, prf, com}\}$ we first show that $\Sigma_{\text{prf}}^\sigma \not\subseteq \Sigma_{\text{AF}}^\sigma$. Let $V = \{v_1, v_2, v_3\}$ with $v_1 = \{a \mapsto f, b \mapsto t, c, e \mapsto t\}$, $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto t, e \mapsto f\}$, and $v_3 = \{a \mapsto t, b \mapsto f, c \mapsto t, e \mapsto f\}$. A witness of prf-realizability of V in ASSADFs is $D = (S, L, C)$ with $S = \{a, b, c, e\}$, $\varphi_s = \neg e \land (\neg b \lor \neg c)$, $\varphi_b = \neg a \lor \neg c$, $\varphi_c = \neg a \lor \neg b$, and $\varphi_e = \neg a$. However, there is no AF with V as its preferred interpretations. (If there is an AF F' s.t. $\sigma(F') = V$ then the structure of v_1, v_2 and v_3 implies that there is no attack between a, b and c in F'. Thus, if there is an attack from any of a, b and c to e then $\{a \mapsto t, b \mapsto f, c \mapsto t, e \mapsto f\}$ is a preferred interpretation of F'. If there is no attack from any of a, b and c to e then $\{a \mapsto t, b \mapsto f, c \mapsto t, e \mapsto f\}$ is a preferred interpretation of F'. In both cases $\sigma(F') \neq V$.) For $\sigma = \text{com}$ let $V' = V \cup \{a \mapsto u, b \mapsto u, c \mapsto u, e \mapsto u\}$. It is easy to check that V' is com-realizable by the ASSADF D defined above. If there is an AF F' that realizes V' under com then each of the elements of V' would be a preferred interpretation of F'. Thus, $\text{prf}(F') = V$ would be the case, which it is easy to see is actually false. Finally, we get $\Sigma_{\text{ASSADF}}^\sigma \not\subseteq \Sigma_{\text{AF}}^\sigma$ by observing that from adm being realizable under adm in AFs it would follow that $\text{prf}(D)$ is realizable under prf in AFs. But we already showed that the latter is not the case. ---

Theorems 8–9 together with results from [16] are summarized in Figure 3. The situation is different for the stable semantics. We recall that stable models v, w of an ADF are always incomparable, i.e. $w^d \subseteq v^d$ implies $w^d = v^d$, see [17].

Theorem 10. $\Sigma_{\text{AF}}^{\text{stb}} \subseteq \Sigma_{\text{ASSADF}}^{\text{stb}} \sim \Sigma_{\text{BADF}}^{\text{stb}}$.

Proof. (Sketch) $\Sigma_{\text{AF}}^{\text{stb}} \subseteq \Sigma_{\text{BADF}}^{\text{stb}}$ is shown in [15]: if we can show $\Sigma_{\text{stb}}^{\text{AF}} \sim \Sigma_{\text{stb}}^{\text{BADF}}$ we are thus done. We do so by showing that any incomparable set of two-valued interpretations is stb-realizable by some ASSADF. To this end, let V be an incomparable set over arguments S (i.e., each $v \in V$ assigns t or f to all $s \in S$) and consider an ASSADF $D = (S, L, C)$ with the following acceptance conditions for $s \in S$:

- If $v(s) = t$ for every $v \in V$ then $\varphi_s = \top$.
- If $v(s) = f$ for every $v \in V$ then $\varphi_s = \bot$.
- Otherwise, $\varphi_s = \lor_{v \in V} v(s) = t \land \exists w \in V : (w(s) = f \lor (w(t) = t) = \neg \lor_{v \in V} v(s) = t$.

By definition, all links in D are attacking and symmetry follows by construction and the fact that V is incomparable. Moreover, it can be shown that the stable models of D are exactly given by V. ---

2In fact, this construction is a slight adaption of a result in [15].
The following is a consequence of Theorem 10, the fact that \(\text{stb} \) and \(\text{mod} \) are equivalent for AFs, and that ASSADFs are weakly coherent (cf. Theorem 6), and \(\Sigma_{\text{ASSADF}} \supseteq \Sigma_{\text{BADF}} \) from Theorem 8.

Corollary 11. \(\Sigma_{\text{AF}} \supseteq \Sigma_{\text{ASSADF}} \supseteq \Sigma_{\text{BADF}} \).

The picture changes when we restrict the cardinality of interpretation sets. As it turns out, any set of interpretations of size 2 obtained from an ADF under the stable semantics is also realizable in AFs.

Proposition 12. Suppose that \(|V| = 2 \) and \(V \) is \(\text{stb} \)-realizable in ADFs. Then \(V \) is \(\text{stb} \)-realizable in AFs.

Proof. Let \(V = \{v_1, v_2\} \) be a set of interpretation that is \(\text{stb} \)-realizable in ADFs, i.e. there there exists an ADF \(D = (S, L, C) \) s.t. \(\text{stb}(D) = V \). Construct an AF \(F = (A, R) \) by setting \(A = S \) and \(R = \{(a, b) \mid v_i(a) = t, v_i(b) = f, 1 \leq i \neq j \leq 2\} \). To prove that \(\text{stb}(F) = V \), take \(v_i \in V \). First, there is no attack between arguments with \(v_i(a) = t \). Moreover, if \(v_i(b) = f \) then, since neither \(v_1 \leq v_2 \) nor \(v_2 \leq v_1 \), there must be some \(a \in A \) with \(v_j(a) = t \) and \(v_j(a) = f \), hence this \((a, b) \in R \). Hence \(v_i \) is a stable interpretation of \(F \). That is, \(V \) is \(\text{stb} \)-realizable in AFs.

5. Experiments

We turn now to the experimental section of our work, where we report on results on an initial investigation of the performance of solvers for ADFs on subclasses of ADFs. We focused on the question to what extent current systems are tuned to the acyclic vs. non-acyclic nature of ADFs. We carried out experiments for credulous acceptance w.r.t. the admissible semantics and skeptical acceptance w.r.t. the preferred semantics. From Theorem 3 and complexity results for ADFs \[9\] it follows that these reasoning tasks can be decided in polynomial time for acyclic ADFs, while they are located on the second and third level of the polynomial hierarchy respectively in general.

All systems for ADFs we are aware of rely on encodings to some other formalism; namely, to quantified Boolean formulas (QBFs) and answer set programming (ASP). None of these systems are tailored specifically to acyclic ADFs. Therefore, the question becomes to what extent the solvers used at the backend of current ADF systems are able to use the acyclic nature of ADFs in their favour.
To answer the question at hand we have modified an existing generator for ADFs (used in [18]) to take an undirected graph as input\(^3\) and be able to generate an acyclic as well as a non-acyclic ADF as output. The generated ADF inherits the structure of the graph; vertices in the graph become arguments in the ADF. As to the links of the ADF, in the case of an acyclic ADF a directed graph is first generated from the undirected graph by choosing a total order on the vertices at random. This total order is used to determine the direction of the links. For the non-acyclic ADF, a probability controls whether an edge in the input graph will result in a symmetric link in the ADF (we used a probability of 0.5); in case of non-symmetric links the direction of the link is chosen at random.

Having the links of the ADF, the procedure of generating the acceptance conditions is the same for acyclic as well as non-acyclic ADFs. Each parent of an argument is assigned to one of 5 different groups (with equal probability), determining whether the parent participates in a subformula of the argument’s acceptance condition representing the notions of attack, group-attack, support, or group-support familiar from argumentation. Also, the parents can appear as literals connected by XOR (to capture the full complexity of ADFs)\(^4\). The subformulas are connected via \(\land\) or \(\lor\) with equal probability.

In our experiments the input graphs stem from data-sets used at the second international competition on computational models of argumentation (ICCMA)\(^5\), namely from encoding assumption-based argumentation problems into AFs (“ABA”), encoding planning problems as AFs (“Planning”), and a data-set of AFs generated from traffic networks (“Traffic”). More specifically, based on preliminary experiments, we selected 100 AFs at random from a subset of AFs having up to 150 arguments in the very dense AFs in the “ABA” data-set, and 100 AFs at random from a subset of AFs having up to 300 arguments in each of the “Planning” and “Traffic” benchmarks. From the resulting 300 AFs interpreted as undirected graphs, we generated 300 acyclic and 300 non-acyclic ADFs.

We evaluated the performance of the QBF-based system QADF [19] as well as the ASP-based systems goDIAMOND [20] and YADF [18]. We studied the running times for credulous reasoning for the admissible and skeptical reasoning for the preferred semantics. We used a 48 GB Debian (8.5) machine with 8 Intel Xeon processors (2.33 GHz). For QADF we used version 0.3.2 together with the preprocessor bloqqer 035 and the QSAT-solver DepQBF 4.0. YADF is version 0.1.0 with the rule decomposition tool lpept and the ASP-solver clingo 4.4.0. We gave the systems 10 minutes computation time.

Table 1 and Figure 4 summarise the results of our experiments. For the admissible semantics, the interesting result is the significant improvement of QADF on the acyclic ADFs. For goDIAMOND there seems also to be a slight improvement on the “Planning” and “Traffic” benchmarks (although two time-outs\(^6\) on the acyclic instances of “Planning”). For YADF there is some improvement on the acyclic “ABA” benchmarks.

In the case of the preferred semantics, QADF timed-out on most acyclic as well as non-acyclic instances (in particular, all of the “Planning” instances). YADF also had quite a few time-outs, especially on the “ABA” and “Planning” benchmarks on which other-

\(^3\)Note that the version reported on in [18] takes a directed graph as input.

\(^4\)In order not to bias the results of the experiments artificially in favour of solvers that are able to process acceptance conditions with XOR without first having to simplify them, the parents appear in groups of up to 5 connected by XOR. These subformulas are, in turn, connected with \(\land\) or \(\lor\) with equal probability.

\(^6\)In the case of goDIAMOND there were actually almost no time-outs, yet memory-errors. For simplicity, we do not distinguish between time-outs and memory-errors here.
Table 1. Time-outs and mean running times (in seconds) for all solvers. Mean running times are computed disregarding time-outs. Number of time-outs are always out of 100 ADF instances.

<table>
<thead>
<tr>
<th></th>
<th>Acyclic</th>
<th>Non-acyclic</th>
<th>Acyclic</th>
<th>Non-acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time-outs</td>
<td>Mean</td>
<td>Time-outs</td>
<td>Mean</td>
</tr>
<tr>
<td>ABA</td>
<td>goDIAMOND</td>
<td>52</td>
<td>21.26</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>QADF</td>
<td>23</td>
<td>2.96</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>YADF</td>
<td>54</td>
<td>7.38</td>
<td>56</td>
</tr>
<tr>
<td>Planning</td>
<td>goDIAMOND</td>
<td>2</td>
<td>4.27</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>QADF</td>
<td>11</td>
<td>8.07</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>YADF</td>
<td>2</td>
<td>8.13</td>
<td>0</td>
</tr>
<tr>
<td>Traffic</td>
<td>goDIAMOND</td>
<td>1</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>QADF</td>
<td>2</td>
<td>3.07</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>YADF</td>
<td>1</td>
<td>1.65</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 4. Plot of running time (in seconds) vs. number of instances solved (out of all benchmarks) for all ADF solvers. “ac” stands for “acyclic”, “nac” for “non-acyclic”.

Figure 4. (a) Credulous-admissible (b) Skeptical-preferred

6. Discussion

In this work, we introduced several subclasses of ADFs and investigated their properties. We showed that acyclic ADFs behave similar to acyclic AFs in terms of different semantics. We discussed that for symmetric ADFs the picture is different and related the expressibility of a particular class of symmetric ADFs (ASSADFs) to the expressibility of AFs and BADFs. We also provided experiments to analyse the performance of solvers when applied to these subclasses. Our results show that some systems are more efficient on acyclic instances (compared to cyclic ones of similar size), while others are not, which indicates possible optimization potential for the latter (the complexity of acyclic ADFs has been recently addressed in [21]). As future work, we also consider to extend our studies to other ADF semantics [22,23].

Acknowledgements. This research has been supported by FWF projects I2854, P30168, and W1255. The second researcher is currently embedded in the Center of Data Science & System Complexity (DSSC) Doctoral Programme, at the University of Groningen.
References