Viewpoints using ranking-based argumentation semantics

Bruno YUN1, Srdjan VESIC2 and Madalina CROITORU3 Pierre BISQUERT4

1INRIA LIRMM - University of Montpellier
2CRIL CNRS - University of Artois
3IATE - INRA, Montpellier

Abstract. To address the needs of the EU NoAW project, in this paper we introduce a new modular framework that generates viewpoints (i.e. extensions) based on ranking argumentation semantics by considering a selection function, a ranking on arguments and a lifting function as its input parameters. We study the different combinations of the input parameters and introduce a set of postulates investigated for the framework’s different classes of output.

Keywords. Argumentation Graphs, Ranking Semantics

1. Introduction

Ranking-based semantics are being studied by a large amount of researchers [15, 2, 6, 1, 8, 14, 16]. New semantics are being introduced, as well as the principles they should satisfy. One of the main reasons of their popularity is that they may offer a finer evaluation than extension-based semantics [12, 10, 5, 11, 13].

There is a difference in the output format between these two approaches: when using a ranking-based semantics, the output is a ranking on the arguments; in the case of extension based semantics, the output is a set of extensions. While the ranking and the scores (which are present in many ranking-based semantics) allow to better assess the acceptability degree of each individual argument, the question “what are the points of view of the argumentation framework?” stays unanswered when using a ranking-based semantics. The main research goal of this paper is to (ask and) answer that question.

Figure 1. Is one highly ranked argument a stronger point of view? Are several well-ranked arguments another?

1Corresponding Author
Consider the argumentation framework (AF) from Figure 1. Let us use h-categorizer ranking semantics \[7\]. We obtain \(a \succ b, c \succ d \succ e\). What are the possible points of view?

Clearly \(S_1 = \{a\}\) is admissible and strong, but should we also accept \(S_2 = \{b, c, d\}\)? Since \(S_2\) contains three arguments, is it (even) better than \(S_1\)? It seems that both \(S_1\) and \(S_2\) are acceptable points of view, but which one is stronger: \(S_1\) having only one highly ranked argument or \(S_2\) having three arguments of medium strength? Consider now the AF from Figure 2. Let us use h-categorizer ranking semantics. The three strongest arguments are \(a, b\) and \(c\) with scores approximately 0.76, 0.71 and 0.71, respectively. Arguments \(d\) and \(e\) are much weaker with scores approximately 0.40 and 0.31, respectively. If one looks for conflict-free sets containing highly ranked arguments, two potential candidates are \(S_1 = \{a, b, c\}\) and \(S_2 = \{d, e\}\). Should one accept \(S_1\), which contains the three strongest arguments but is not admissible (it is attacked by a self-attacking argument)?
semantics returns numerical scores, one could also compare the sums of scores of all arguments.

Out of all sets returned by the selection function, only the best ones (w.r.t. the ranking function and the lifting operator) are kept and they represent the output of our framework.

Let us give a quick preview of the kind of results our framework can return. In this example we assume the reader is familiar with many argumentation notions including the definitions of several ranking semantics. If this is not the case please refer to Section 2 for the full definitions. In the example from Figure 1, the scores of arguments with respect to h-categorizer ranking semantics are approximately 0.67 for \(a\), 0.60 for \(b\) and \(c\), 0.50 for \(d\) and 0.35 for \(e\). Let us select all maximal conflict-free sets; we obtain \(S_1 = \{a\}\), \(S_2 = \{b, c, d\}\) and \(S_3 = \{e\}\). Now, if we use leximax or max as lifting, we will obtain \(S_1\) as the output of our framework. If we use the sum of arguments’ scores as the lifting function, we obtain \(S_2\). So, according to the user’s choice of the lifting function, one of the two results is obtained.

Consider now the example from Figure 2. If admissibility is important for the user, they will select only (a subset of) admissible sets, thus \(\{a, b, c\}\) will not be a part of the output. On the contrary, if we select all the maximal conflict-free sets, we obtain \(S_1 = \{a, b, c\}\) and \(S_2 = \{d, e\}\). For all reasonable lifting operators \(S_1\) is preferred to \(S_2\), thus the output of the framework is \(S_1\) in this case.

Please note that there is no universally correct answer at the question of “What is the best viewpoint?”. Such question heavily relies on its context: what is an argument assumed to be, what is the application at hand, how are the argumentation graphs obtained, how are the attacks obtained, who is the user and what is their profile etc. Such dilemma does not mean that we cannot advance the state of the art. Indeed, we can propose a modular framework that is generic enough to be able to accommodate various application scenarios. In this case, one important property of the framework lies in its versatility and its capacity to yield different results according to various instantiations.

After defining this general framework in a formal way, we propose and study some of its instantiations. We show that some of the instantiations are comparable in terms of set inclusion and that the vast majority of them return distinct results. We evaluate our framework via a set of postulates and prove their satisfaction for certain instantiations. Furthermore, we also exhibit its non trivial behaviour when instantiated with logical AFs.

The importance of that part of the work is to show that the three layers work independently and that the reasoning machinery does provide, accordingly, different outputs (more details are provided in Section 3). Since not all applications have the same needs, such versatility ensures the significance of our result.

The paper is organised as follows: in Section 2 we introduce our new framework aimed at calculating the possible points of views (“extensions”) when using ranking-based semantics. In Section 3 we show the usages of this framework and highlight the general inclusion, equality and difference results with respect to several possible inputs. In Section 4 we propose several new postulates for the ranking-based selection framework and prove the satisfaction of these postulates for some instantiations of the framework. Finally we show how the use of our framework in a logically instantiated setting yields intuitive results.
2. Ranking-based selection \(\mathbb{RSF} \)

An AF is a pair \(\mathcal{M} = (\mathcal{A}, \mathcal{C}) \) where \(\mathcal{A} \) is a finite set of arguments and the binary relation \(\mathcal{C} \subseteq \mathcal{A} \times \mathcal{A} \) is the set of attacks (conflicts) between arguments. The set of all possible arguments is denoted by \(\mathbb{A} \) and the set of all possible AFs is denoted by \(\mathcal{K} \). The proposed ranking-based selection framework \(\mathbb{RSF} \), given an AF and three input parameters, returns a set of arguments with particular properties. It consists of three steps:

1. First, a selection function \(S : \mathcal{K} \rightarrow 2^\mathbb{A} \) selects a set of subsets of \(\mathcal{A} \subseteq \mathbb{A} \) from \(\mathcal{M} = (\mathcal{A}, \mathcal{C}) \in \mathcal{K} \).
2. Second, a ranking semantics \(\mathbb{R} : \mathcal{K} \rightarrow 2^{\mathbb{A} \times \mathbb{A}} \) computes a total order on \(\mathcal{A} \subseteq \mathbb{A} \) from \(\mathcal{M} = (\mathcal{A}, \mathcal{C}) \in \mathcal{K} \).
3. Third, a lifting function \(\mathbb{L} : 2^{\mathbb{A} \times \mathbb{A}} \times \mathcal{K} \rightarrow 2^{\mathbb{A} \times \mathbb{A}} \times 2^{\mathbb{A} \times \mathbb{A}} \) takes as input \(\mathcal{M} = (\mathcal{A}, \mathcal{C}) \in \mathcal{K} \) and a total order on \(\mathcal{A} \subseteq \mathbb{A} \) and returns a total order on the subsets of \(\mathcal{A} \).

Definition 1. A ranking-based selection framework \(\mathbb{RSF} \) is a tuple \((\mathbb{S}, \mathbb{R}, \mathbb{L})\) where \(\mathbb{S} \) is a selection function, \(\mathbb{R} \) is a ranking semantics and \(\mathbb{L} \) is a lifting function. The top result of a \(\mathbb{RSF} = (\mathbb{S}, \mathbb{R}, \mathbb{L}) \) on an AF \(\mathcal{M} \) is \(\mathcal{O}_{\mathbb{S}, \mathbb{R}, \mathbb{L}}(\mathcal{M}) = \{ E \in \mathbb{S}(\mathcal{M}) \mid \text{for all } E' \in \mathbb{S}(\mathcal{M}), (E, E') \in \mathbb{L}(\mathbb{R}(\mathcal{M}), \mathcal{M}) \} \). If the graph is obvious, we denote the result by \(\mathcal{O}_{\mathbb{S}, \mathbb{R}, \mathbb{L}} \).

2.1. The \(\mathbb{RSF} \) selection

Given an AF, a selection function returns a set of sets of arguments. Before presenting the several selection functions considered in the paper we need some additional notions.

Given a subset of nodes \(\mathcal{X} \) of \(\mathcal{A} \), we denote by \(\mathcal{X}^+ \), the set of arguments attacked by \(\mathcal{X} \), i.e. \(\mathcal{X}^+ = \{ a \in \mathcal{A} \mid \text{there is } x \in \mathcal{X} \text{ such that } (x, a) \in \mathcal{C} \} \). Likewise, the set of nodes that attack at least one node of \(\mathcal{X} \) is denoted by \(\mathcal{X}^- = \{ a \in \mathcal{A} \mid \text{there exists } x \in \mathcal{X} \text{ such that } (a, x) \in \mathcal{C} \} \). An argument \(a \in \mathcal{A} \) is defended by a set \(\mathcal{X} \subseteq \mathcal{A} \) in \(\mathcal{M} \) if for each \(b \in \mathcal{A} \) with \((b, a) \in \mathcal{C} \), there exists \(x \in \mathcal{X} \text{ s.t. } (x, b) \in \mathcal{C} \).

The selection functions investigated by this paper are:

- conflict-free sets of \(\mathbb{M} \): \(cf(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid \text{for every } x_1, x_2 \in X, (x_1, x_2) \notin \mathcal{C} \} \).
- maximal for set inclusion conflict-free sets of \(\mathbb{M} \): \(cf_{\text{max}}(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in cf(\mathcal{M}) \text{ and there is no } X' \text{ s.t. } X \subseteq X' \text{ and } X' \in cf(\mathcal{M}) \} \).
- maximal for set cardinality conflict-free sets of \(\mathbb{M} \): \(cf_{\text{card}}(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in cf(\mathcal{M}) \text{ and there is no } X' \text{ s.t. } |X| < |X'| \text{ and } X' \in cf(\mathcal{M}) \} \).
- admissible extensions of \(\mathbb{M} \): \(ad(\mathbb{M}) = \{ X \subseteq \mathcal{A} \mid X \in cf(\mathcal{M}) \text{ and for each } a \in X, a \text{ is defended by } \mathcal{X} \} \).
- preferred extensions of \(\mathbb{M} \): \(pr(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in ad(\mathbb{M}) \text{ with no } X' \text{ s.t. } X \subseteq X' \text{ and } X' \in ad(\mathbb{M}) \} \).
- stable extensions of \(\mathbb{M} \): \(st(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in cf(\mathcal{M}) \text{, for every } a \in \mathcal{A} \setminus X, \exists c \in X \text{ s.t. } (c, a) \in \mathcal{C} \} \).
- complete extensions of \(\mathbb{M} \): \(co(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in ad(\mathbb{M}) \text{, for each } a \in \mathcal{A} \text{ defended by } \mathcal{X}, a \in X \} \).
- grounded extension of \(\mathbb{M} \): \(gr(\mathcal{M}) = \{ X \subseteq \mathcal{A} \mid X \in co(\mathcal{M}) \text{ and for each } X' \in co(\mathcal{M}), X' \not\subseteq X \} \).

Example 1. Let \(\mathcal{M} = (\mathcal{A}, \mathcal{C}) \) with \(\mathcal{A} = \{ a, b, c, d, e \} \) and \(\mathcal{C} = \{ (a, e), (b, a), (b, c), (c, e), (d, a), (e, d) \} \). We have \(\{ a, c \}^+ = \{ e \} \), \(\{ a, c \}^- = \{ d, b \} \) and \(e \) is defended by \(\{ d, b \} \).
The set of conflict-free sets is $cf(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,c\}, \{d\}, \{b,d\}, \{c,d\}, \{b,e\}\}$. Amongst those sets, we have $cf_{\text{max}}(M) = cf_{\text{max}}^{\text{card}}(M) = \{(a,c), \{b,d\}, \{c,d\}, \{b,e\}\}$. However, the only admissible set amongst these maximal sets is $\{b,e\}$. Furthermore, we also have $pr(M) = st(M) = co(M) = gr(M) = \{\{b,e\}\}$.

2.2. The RSF ranking

A ranking semantics is a function R that returns a total order on the set of arguments. We chose to use two well-known ranking semantics to illustrate our framework: burden-based semantics \cite{1} and h-categorizer semantics \cite{4} reminded below. Please refer to the original papers for the full definitions, here we only give a quick overview.

The score of each argument at a given step with respect to burden-based semantics is calculated as follows. Let $M = (\mathcal{A}, \mathcal{C})$ be an AF, $a \in \mathcal{A}$ and $i \in \{1, 2, \ldots, n\}$, then:

$$Bur_i(a) = \begin{cases} 1 & \text{if } i = 1 \\ 1 + \sum_{(b,a) \in \mathcal{C}} \frac{1}{Bur_{i-1}(b)} & \text{otherwise} \end{cases}$$

Please note that an equality-ensuring threshold exists for the burden-based semantics \cite{4}. This ensures an exact computation of the ranking, despite the fact that the number of steps is infinite. The ranking obtained with this semantics on an AF M is computed using the lexicographical order and will be denoted by $R_{\text{BBS}}(M)$.

The h-categorizer semantics is computed as follows. Each argument a is attached a score $Cat(a) > 0$ such that:

$$Cat(a) = \begin{cases} 1 & \text{if } \{a\}^\sim = \emptyset \\ \frac{1}{1 + \sum_{(b,a) \in \mathcal{C}} Cat(b)} & \text{otherwise} \end{cases}$$

It has been proved that h-categorizer is well-defined, i.e. that for every AF, the score $Cat(\cdot)$ of each argument is unique. The ranking obtained with this semantics on an AF M will be denoted $R_{\text{CAT}}(M)$.

Example 2. [Ex. 1 cont.] The ranking obtained using the burden-based semantics is $R_{\text{BBS}}(M) = b \succ d \succ c \succ e \succ a$ whereas the ranking obtained throughout the h-categorizer semantics is $R_{\text{CAT}}(M) = d \succ c \succ e \succ b \succ a$.

2.3. The RSF lifting

A lifting function L (also referred to as lifting operator, or lifting) compares sets of arguments given their individual order and returns a total order on the sets.

Let us first introduce the sort function that will be used in order to define the L_{leximax} notion below. Given a set of elements $X = \{x_1, x_2, \ldots, x_n\}$ and a total, reflexive and transitive binary relation \succeq on X, $\text{sort}(X, \succeq)$ returns a sorted vector (x_1, x_2, \ldots, x_n) such that for every x_i, x_j, we have that $x_i \succeq x_j$ iff $i \leq j$. The element at position i in the vector $\text{sort}(X, \succeq)$ is denoted by $\text{sort}_i(X, \succeq)$. Note that the returned vector is not necessarily unique due to the fact that some elements might be equivalent, i.e. $x_i \sim x_j$.

In this paper we consider several possible instantiations of the lifting operator L:
The \(L_{\text{max}} \) lifting operator compares the subsets with respect to their maximal elements.

The \(L_{\text{leximax}} \) lifting operator compares the elements after sorting them in decreasing order.

The \(L_{\text{PST}} \) lifting operator compares the subsets on whether or not they are preferred sub-theories (PST) [9]. We recall the reader that a PST of a stratification \(T_\subseteq = (T_1, \ldots, T_k) \) induced by an order \(\succeq \) (i.e. a sorted sequence where \(T_i \in X/\sim \) where \(\sim \) is the equivalence relation induced by \(\succeq \)) is a set \(S = S_1 \cup S_2 \cup \cdots \cup S_k \) such that for every \(k \in \{1, \ldots, n\}, S_1 \cup \cdots \cup S_k \) is a maximal (with respect to \(\subseteq \)) conflict-free subset of \(T_1 \cup \cdots \cup T_k \).

Example 3. [Ex 2 cont.] Let \(\mathcal{A}, \mathcal{E} \) be an AF \(\succeq \) a total order on \(\mathcal{A}, E, E' \in S(M) \), \(\text{sort}(E, \succeq) = (x_1, x_2, \ldots, x_n) \) and \(\text{sort}(E', \succeq) = (x'_1, x'_2, \ldots, x'_m) \). We say that:

- \((E, E') \in L_{\text{max}}(\succeq, M) \) iff \(\text{max}(E) \succeq \text{max}(E') \), where \(\text{max}(X) = \text{sort}_1(X, \succeq) \).
- \((E, E') \in L_{\text{leximax}}(\succeq, M) \) iff one of the following holds:
 - \(m = n \) and for every \(i \in \{1, \ldots, n\}, x_i \succeq x'_i \)
 - there exists \(i \in \{1, \ldots, \min(m,n)\} \) s.t. \(x_i \succ x'_i \) and for every \(j \in \{1, \ldots, i-1\}, x_j \succeq x'_j \)
 - \(n > m \) and for every \(i \in \{1, \ldots, m\}, x_i \sim x'_i \)
- \((E, E') \in L_{\text{PST}}(\succeq, M) \) iff \(E \) is a preferred sub-theory of the stratification \(T_\subseteq \).

Example 4 (Ex. 3 cont.). We have \(\mathcal{L}_{\text{ad}, \mathcal{BBS}, L_{\text{max}}}(M) = \{ \{b, d\}, \{b, e\} \} \).

In the next section we investigate how the different combinations of instantiations of the tuple elements \(S, R, L \) relate to each other.

3. \(\mathcal{E}_{S,R,L}(M) \) instantiation landscape

This section compares the outputs of an \(\mathcal{RSF} \) obtained when varying the selection function and the lifting operator. We show that the output is different when using different parameters, since using a particular lifting function does not make two given semantics coincide. Hence, \(\mathcal{RSF} \) allows for a large amount of combinations leading to different results. We investigate how all combinations of the \((S, R, L) \) instantiations relate to each other and focus on both (1) inclusion and equality results and (2) difference results.

Inclusion and equality results wrt \(\mathcal{E}_{S,R,L}(M) \). Obviously, for any given \(M, \) we always have \(\mathcal{E}_{S,R,L}(M) \subseteq S(M) \). This is because the top result is always a subset of the
set returned by the selection function S. The first result of this section shows that the output corresponding to the lexicmax lifting refines the output corresponding to the max lifting.

Proposition 1. Let M be an AF, R a ranking semantics and S a selection function. Then
$\theta_{S,R,\text{leximax}}(M) \subseteq \theta_{S,R,\text{max}}(M)$.

The next result concerns preferred sub-theories. Every preferred sub-theory is a maximal for set inclusion conflict-free subset of \mathcal{A}. Thus, comparing all conflict-free subsets or only maximal conflict-free subsets of \mathcal{A} by using \mathcal{L}_{PST} will yield the same result. Formally:

Proposition 2. Let M be an AF and R a ranking semantics. Then $\theta_{c_{\text{max}},R,\text{leximax}}(M) = \theta_{c_{\text{max}},R,\text{leximax}}(M)$ and $\theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M) = \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$. For $L \in \{\text{leximax},\mathcal{L}_{\text{PST}}\}$ then $\theta_{c_{\text{max}},R,L}(M) \not\subseteq \theta_{c_{\text{max}},R,L}(M)$.

Proof. We split the proof into 3 parts:

- **Sketch.** We know that $\theta_{c_{\text{max}},R,\text{leximax}}(M) \supseteq \theta_{c_{\text{max}},R,\text{leximax}}(M)$. We show that $\theta_{c_{\text{max}},R,\text{leximax}}(M) \subseteq \theta_{c_{\text{max}},R,\text{leximax}}(M)$ by contradiction. Suppose the existence of a maximal conflict free set E that is in $\theta_{c_{\text{max}},R,\text{leximax}}(M)$ but not in $\theta_{c_{\text{max}},R,\text{leximax}}(M)$. Thus, there is a conflict free set E' such that $(E',E) \in L_{\text{leximax}}(R(M),M)$ and $(E,E') \not\in L_{\text{leximax}}(R(M),M)$. Thus, there exists a maximal conflict free set E'' such that $E' \subseteq E''$ and $(E',E'') \not\in L_{\text{leximax}}(R(M),M)$. Therefore, $E \not\in \theta_{c_{\text{max}},R,\text{leximax}}(M)$.

- **Sketch.** We know that $\theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M) \supseteq \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$. We show that $\theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M) \supseteq \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$ by contradiction by supposing that $\theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M) \supseteq \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$. Let $E \in \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$ such that $E \not\in \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$. There are two cases: either E is a PST of the stratification T or there is no PST of T. In the two cases, we have $E \in \theta_{c_{\text{max}},R,\mathcal{L}_{\text{PST}}}(M)$.

- The counter-example can be constructed using the argumentation graph of Example 7. Indeed, if the ranking is changed to $a \succ b, c, d$ we have that the output with respect to c_{max} is $\{\{c,d\}\}$ whereas the one for c_{max} is $\{\{a\}\}$.

\[\Box\]

Non-equality results wrt $\theta_{S,R,L}(M)$. Tables 2 and 3 show the results for different instantiations (for brevity reasons a list of output abbreviations is given in Table 1). The elements in the first column and in the first row of those tables represent the result of the corresponding instantiation of the \mathcal{R}_{PST}. The entry “$=$” in row C and column X indicates that C is equal to X in all cases. The entry “\neq” in row C and column X indicates that C can be different than X and that the counter-example is provided in Example n. For example \neq_1 means that the counter example can be found in Example 5.

Example 5. Let us consider the AF $M = (\mathcal{A}, \mathcal{E})$ with $\mathcal{A} = \{a,b,c,d,e,f\}$ and $\mathcal{E} = \{(d,a), (a,d), (a,f), (a,b), (b,c), (c,e), (e,b)\}$. Note that the ranking obtained with \mathcal{R}_{BBS} and \mathcal{R}_{CAT} is the same $c \succ a, d \succ e \succ b$. Thus:

- $\theta_{c_{\text{max}},\mathcal{R}_{\text{BBS}},\text{leximax}}(M) = \theta_{c_{\text{max}},\mathcal{R}_{\text{BBS}},\text{leximax}}(M) = \{\{c,d,f\}\}$
- $\theta_{c_{\text{max}},\mathcal{R}_{\text{BBS}},\mathcal{L}_{\text{PST}}}(M) = \theta_{c_{\text{max}},\mathcal{R}_{\text{BBS}},\mathcal{L}_{\text{PST}}}(M) = \{\{a,c\}, \{c,d,f\}\}$
If the ranking (experts evaluation, preferences, use of a new ranking, etc.), we have:

Let us consider the AF

\[
\begin{array}{llllll}
\theta_1 & \theta_{f,b,R_{\text{leximax}}} & \theta_7 & \theta_{p,R_{\text{leximax}}} \\
\theta_2 & \theta_{f,b,L_{\text{PST}}} & \theta_8 & \theta_{p,R_{L_{\text{PST}}}} \\
\theta_3 & \theta_{f,b,R_{\text{leximax}}} & \theta_9 & \theta_{p,R_{\text{leximax}}} \\
\theta_4 & \theta_{f,b,R_{L_{\text{PST}}}} & \theta_{10} & \theta_{p,R_{L_{\text{PST}}}} \\
\theta_5 & \theta_{f,b,L_{\text{leximax}}} & \theta_{11} & \theta_{p,R_{L_{\text{leximax}}}} \\
\theta_6 & \theta_{f,b,L_{\text{PST}}} & & & \\
\end{array}
\]

Table 1. Nomenclature

\[
\begin{array}{cccccccccccccc}
\theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \\
\theta_1 & & & & & & & & & & & & \\
\theta_2 & & & & & & & & & & & & \\
\theta_3 & & & & & & & & & & & & \\
\theta_4 & & & & & & & & & & & & \\
\theta_5 & & & & & & & & & & & & \\
\theta_6 & & & & & & & & & & & & \\
\end{array}
\]

Table 2. (Non-)equality results in the general case, part 1

\[
\begin{array}{cccccccccccccc}
\theta_7 & \theta_8 & \theta_9 & \theta_{10} & \theta_{11} \\
\theta_1 & & & & & & & & & & & & \\
\theta_2 & & & & & & & & & & & & \\
\theta_3 & & & & & & & & & & & & \\
\theta_4 & & & & & & & & & & & & \\
\theta_5 & & & & & & & & & & & & \\
\theta_6 & & & & & & & & & & & & \\
\theta_7 & & & & & & & & & & & & \\
\theta_8 & & & & & & & & & & & & \\
\theta_9 & & & & & & & & & & & & \\
\theta_{10} & & & & & & & & & & & & \\
\theta_{11} & & & & & & & & & & & & \\
\end{array}
\]

Table 3. (Non-)equality results in the general case, part 2

- \(\theta_{p,R_{\text{L_{leximax}}}}(M) = \theta_{p,R_{L_{\text{PST}}}}(M) = \theta_{s,R_{BBS_{\text{L_{leximax}}}}}(M) = \theta_{s,R_{BBS_{L_{\text{PST}}}}}(M) = \{a,c\} \)

Example 6. [Ex5 cont.] If the ranking R is changed to \(d, f, a \sim c, b, e \) for some reason (experts evaluation, preferences, use of a new ranking, etc.), we have:

- \(\theta_{p,R_{\text{leximax}}}(b) = \{a\} \)
- \(\theta_{p,R_{L_{\text{PST}}}}(b) = \{a,c\} \)
- \(\theta_{s,R_{\text{leximax}}}(b) = \{a\} \)
- \(\theta_{s,R_{L_{\text{PST}}}}(b) = \{a,c\} \)

Example 7. Let us consider the AF \(M = (\mathcal{A}, \mathcal{F}) \) with \(\mathcal{A} = \{a,b,c,d\} \) and \(\mathcal{F} = \{(b,a), (a,b), (b,c), (b,d), (a,c), (a,d)\} \). Note that the ranking obtained with \(R_{\text{BBS}} \) or \(R_{\text{CAT}} \) is \(a \sim b, c, d \). Thus, we have that:

- \(\theta_{f,b,R_{\text{leximax}}}(M) = \theta_{f,b,R_{\text{leximax}}}(M) = \{a\} \)
- \(\theta_{f,b,R_{L_{\text{PST}}}}(M) = \theta_{f,b,R_{L_{\text{PST}}}}(M) = \{c,d\} \)
Example 8. Let us consider the AF $\mathcal{M} = (\mathcal{A}, \mathcal{C})$ with $\mathcal{A} = \{a, b, c, d\}$ and $\mathcal{C} = \{(b, a), (a, b), (a, c), (c, a), (b, d), (d, b), (c, d), (d, c)\}$. Suppose that R is $b, c, d > a$:

- $\mathcal{R}_{S_{\text{max}}, \text{R}, \text{L}, \text{Leximin}}(\mathcal{M}) = \mathcal{R}_{S_{\text{max}}, \text{R}, \text{L}, \text{Leximin}}(\mathcal{M}) = \{\{b, c\}\}$
- $\mathcal{R}_{S_{\text{min}}, \text{R}, \text{L}, \text{PST}}(\mathcal{M}) = \mathcal{R}_{S_{\text{min}}, \text{R}, \text{L}, \text{PST}}(\mathcal{M}) = \{\{b, c\}, \{d, a\}\}$

4. Framework Postulates

In the previous section, we showed how various outputs of the proposed framework relate to each other. Now, let us introduce a set of postulates that ensure the sensible behaviour of RFSF: anonymity (i.e. the output of a RFSF should be defined only on the basis of the attacks between arguments), dummy (i.e. adding dummy arguments should slightly change the output of the RFSF by adding the dummy arguments into the sets of the output) and compositionality (i.e. the output of an RFSF for an AF should be determined by joining the output of the same RFSF on its connected components). Formally, let $\mathcal{M} = (\mathcal{A}, \mathcal{C}), \mathcal{M}'$ be two AFs and $\text{RFSF} = (S, R, L)$:

- **Anonymity**: RFSF satisfies Anonymity if and only if for any isomorphism γ s.t. $\mathcal{M}' = \gamma(\mathcal{M})$, we have $E \in \mathcal{O}_{S, R, L}(\mathcal{M})$ if and only if $\gamma(E) \in \mathcal{O}_{S, R, L}(\mathcal{M}')$ where isomorphism is defined in the standard way.
- **Dummy**: RFSF satisfies Dummy if and only if for any $a \notin \mathcal{A}$, we have $\mathcal{O}_{S, R, L}(\mathcal{A} \cup \{a\}, \mathcal{C}) = \mathcal{O}_{S, R, L}(\mathcal{M})$.
- **Compositionality**: RFSF satisfies Compositionality if and only if we have $\mathcal{O}_{S, R, L}(\mathcal{M}) = \{\bigcup_{M' \in \mathcal{C}(\mathcal{M})} x_{M'} | \text{for every } M' \in \mathcal{C}(\mathcal{M}), x_{M'} \in \mathcal{O}_{S, R, L}(M')\}$ where $\mathcal{C}(\mathcal{M})$ is the set of all connected components of \mathcal{M}; a connected component is a maximal set such that there is a path from each two argument of that set with respect to $\mathcal{C} \cup \mathcal{C}^{-1}$.

In the remainder of the section, we identify broad classes of instantiations of our framework that satisfy the above postulates. In order to show that postulates are satisfied by those large classes, we do not base our result on particular selections, rankings or liftings. Instead, we introduce the principles on selections, rankings and liftings that are sufficient so that the whole framework behaves in a rational way.

In what follows, we introduce: **abstraction-S** (i.e. the set of sets of arguments returned by the selection function should be defined only on the basis of the attacks between arguments), **dummy-S** (i.e. adding dummy arguments should update the selected sets by adding the dummy arguments to every previously selected sets) and **compositionality-S** (i.e. the result of the selection function on an AF should be determined by joining the output of the same selection function on its connected components). Last, we can consider for the lifting, the corresponding **abstraction-L** (i.e. a lifting function should only be defined on the basis of the attacks between arguments) and **dummy-L** (i.e. a lifting function should conserves its ranking after the addition of a dummy argument).

2 Arguments that are not attacked and do not attack other arguments.
Formally, let $M = (\mathcal{A}, \mathcal{E}), M'$ be two AFs, S a selection function and L a lifting function:

- **Abstraction-S**: S satisfies Abstraction-S if and only if for any isomorphism γ s.t. $M' = \gamma(M)$, we have $E \in S(M)$ iff $\gamma(E) \in S(M')$
- **Dummy-S**: S satisfies Dummy-S if and only if for any $a \notin \mathcal{A}$, we have $S((\mathcal{A} \cup \{a\}, \mathcal{E})) = \{X \cup \{a\} \mid X \in S(M)\}$
- **Compositionality-S**: S satisfies Compositionality-S if and only if $S(M) = \{\cup_{E \in cc(M)} S(E) \mid \text{for every } M' \in cc(M), S(M') \in S(M')\}$
- **Abstraction-L**: L satisfies Abstraction-L if and only if for any isomorphism γ such that $M' = \gamma(M)$ and any order \geq, we have $(E, E') \in L(\geq, M)$ iff $(\gamma(E), \gamma(E')) \in L(\geq, M')$
- **Dummy-L**: L satisfies Dummy-L if and only if for any $a \notin \mathcal{A}$ and any order \geq, we have $(E, E') \in L(\geq, M)$ iff $(E \cup \{a\}, E' \cup \{a\}) \in L(\geq, (\mathcal{A} \cup \{a\}, \mathcal{E}))$

We can now show that our framework satisfies the postulates for a large class of instantiations.

Proposition 3. Let $\mathcal{RSF} = (S, R, L)$ and M be an AF:

- if L satisfies Abstraction-L, S satisfies Abstraction-S then \mathcal{RSF} satisfies Anonymity.
- if L satisfies Dummy-L, S satisfies Dummy-S then \mathcal{RSF} satisfies Dummy.

For the last result we recall the Independence postulate for ranking-based semantics, introduced by [3].

- **Independence**: Let $M = (\mathcal{A}, \mathcal{E})$, if R satisfies Independence if and only if for every $M' = (\mathcal{A}', \mathcal{E}') \in cc(M)$ and for every $a, b \in \mathcal{A}', (a, b) \in R(M')$ implies $(a, b) \in R(M)$

Proposition 4. Let $\mathcal{RSF} = (S, R, L_{\text{leximax}})$ and M be an AF. If S satisfies Compositionality-S and R satisfies Independence then \mathcal{RSF} satisfies Compositionality.

5. Discussion

In this paper we gave the first principled approach to compute viewpoint(s) from a ranking semantics. The proposed framework \mathcal{RSF} was introduced formally and analysed with respect to its modularity and to the principles it abides by. We provided a representation of the landscape of the different outputs that the \mathcal{RSF} can generate for general argumentation graphs and identified some broad classes of instantiations of the \mathcal{RSF} that respect the several postulates.

Our framework generalises several notions from the state of the art. *Global evaluation* of [13] is a special case of a \mathcal{RSF} with S being a given Dung’s semantics, R being a graded semantics that attaches to each argument a the number of sets in S that a belongs to, and L being a specific lifting operator. *Candidate sets* [13] are obtained as another case of a \mathcal{RSF} with S the set of conflict-free sets, R a graded semantics that attaches to each argument a the number of extensions w.r.t. a given Dung’s semantics that a belongs to, and $L = L_{\text{PST}}$.

There are many possible choices for selection functions, ranking semantics and lifting operations. Some might not be suitable; some others might be appropriate for some
but not all applications. This opens another research question which is to study the behaviour and the outputs of the framework depending on the selection / ranking / lifting used. Since this is the first paper that opens the possibility of using this general framework, those questions will be part of our future work.

Acknowledgments

Madalina Croitoru, Pierre Bisquert and Bruno Yun were funded by EU H2020 CORDIS NoAW project (project ID 688338). Srdjan Vesic was supported by ANR-13-BS02-0004 and CNRS PEPS 2018 APOLONIO.

References

